Formulae

Trapezoidal Rule

The approximate area under the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ when $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ is given by:
$\int_{a}^{b} y d x=\frac{h}{2}\{$ Ist ordinate + last ordinate $+2($ sum of all other ordinates $)\}$
Here $\mathrm{h}=\frac{b-a}{n}$

$\mathrm{a} \rightarrow$	Lower limit of integral
$\mathrm{b} \rightarrow$	Upper limit of integral
$\mathrm{n} \rightarrow$	No. of intervals

- Here: No. of ordinates are one more than the no. of intervals

OR
No. of intervals are one less than the no. of ordinates.

- Ordinate \rightarrow value of y

Simpson's Rule

The approximate area under the curve $y=f(x)$ when $a \leq x \leq b$ is given by:
$\int_{a}^{b} y d x=\frac{h}{3}\{($ Ist ordinate + last ordinate $)+2($ sum of all ordinates at odd no. $)+4$ (sum of ordinates at even no. $\left.)\right\}$

$$
\text { Here } \mathrm{h}=\frac{b-a}{n}
$$

$a \rightarrow$	Lower limit of integral
$b \rightarrow$	Upper limit of integral
$n \rightarrow$	No. of intervals

- Here: No. of ordinates are one more than the no. of intervals

OR
No. of intervals are one less than the no. of ordinates.

- Ordinate \rightarrow value of y

Dr. Vikas Gotan
Senior Lecturer in Applied Science
Govt. Polytechnic, Chhapar

