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CHAPTER 11 

HEAT ENGINES 
 

 

 

 

In my rarefied, theoretical, academic and unpractical mind, a heat engine consists of a 

working substance obeying some idealized equation of state such as that for an ideal gas, 

held inside a cylinder by a piston, and undergoing, in a closed cycle, a series of highly 

idealized processes, such as reversible adiabatic expansions or isothermal compressions. 

At various stages of the cycle, the system may be gaining heat from or losing heat to its 

surroundings; or we may be doing work on the system by compressing it, or the system 

may be expanding and doing external work. 

 

The efficiency η of a heat engine is defined as  

 

  .
cycleaduringenginethesuppliedheat

cycleaduringenginethedoneworkexternalnet

to

by
=η    11.1.1 

 

By “net” external work, I mean the work done by the engine during that part of the cycle 

when it is doing work minus the work done on the engine during that part of the cycle 

when work is being done on it.  Notice that the word “net” does not appear in the 

denominator, which refers only to the heat supplied to the engine during that part of the 

cycle when it is gaining heat. 

 

During the compression part of the cycle, the system gives out heat, and only the 

difference “heat in minus heat out” is available to do the external work.  Thus efficiency 

can also be calculated from 

 

    ,

in

outin

Q

QQ −
=η      11.1.2 

 

although the definition of efficiency remains as equation 11.1.1. 

 

No heat engine is 100% efficient, and we need to ask what is the most efficient heat 

engine possible, what are the factors that limit its efficiency, and what is the greatest 

possible efficiency?  Obviously things like friction in the moving parts of the engine limit 

the efficiency, but in my academic mind the engine is built with frictionless bearings and 

all processes in the cycle of compressions and expansions are reversible. 

 

During a cycle, a heat engine moves in a clockwise closed path in the PV plane, and, if 

the processes are reversible, the area enclosed by this clockwise path is the net external 

work done by the system.  It also moves in a clockwise closed path in the TS plane, and, 

if the processes are reversible, the area enclosed by this clockwise path is the net heat 

 
1.1
Introduction
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supplied to the system. The two are equal, and when the system returns to its original 

state, there is no change in the internal energy.  That is, internal energy is a function of 

state. 

 

Depending upon the nature of the various processes during the cycle, the cycle may carry 

various names, such as the Carnot, Stirling, Otto, Diesel or Rankine cycles.  Of these, the 

most important from the theoretical point of view is the Carnot cycle.  I do not know 

whether anyone has ever built a Carnot heat engine.  I do know, however, that no one has 

ever built an engine working between a hot heat source and a cold heat sink that is more 

efficient than a Carnot engine; for, for a given temperature difference between source and 

sink, the Carnot engine is the most efficient conceivable.  There is another important 

thing about the Carnot cycle.  In Chapter 3, we struggled to understand that most difficult 

of all the thermodynamic concepts, namely temperature, and we wondered if we could 

define an absolute temperature scale that was independent of the properties of any 

particular substance.  Consideration of the Carnot cycle enables us to do just that. 

 

Of real heat engines I know very little. I know that one pedal of my car makes the car go 

faster and the other makes it go slower – but what is under the hood or bonnet is beyond 

my ken. Real heat engines may resemble some of the theoretical engines of academia to a 

greater or lesser extent. Thus a motor car engine may resemble an Otto cycle, or a steam 

engine may resemble a Rankine cycle, or a real Diesel engine may resemble the 

theoretical Diesel cycle.  Engineering students may wonder whether they need bother 

with learning about “theoretical” engines that bear little resemblance to the metal and fuel 

that they have to work with on a practical basis.   I cannot answer that, but there is just 

one thing I do know about real engines, and that is that they are subject to and follow all 

the fundamental laws of thermodynamics that theoretical engines have to follow; and I 

suspect that the engineer who designed the engine in my car had a pretty thorough 

knowledge of the fundamental principles of thermodynamics. 

 

 

 

I referred above to one of the uses of the theoretical concept known as the Carnot cycle, 

namely that it enables us to define an absolute temperature scale.  I suggest that, before 

you read any further, you re-read Section 3.4 of Chapter 3. 

 

Pause while you re-read Section 3.4 

 

As a temporary measure I am going to use the symbol θ to represent the temperature 

measured on the ideal gas scale.  I shall then define an absolute temperature scale, T, and 

show that it is identical with the ideal gas temperature scale. 

 

To start with, I shall suppose that the working substance in our Carnot engine is an ideal 

gas.  We shall refer to figure XI.1,  in which ab and cd are isotherms at temperatures θ2 

and θ1 respectively (θ2 > θ1), and bc and da are adiabats. Starting at the point ),,( 11 VPa  a 

quantity of heat Q2 is supplied to the gas as it expands isothermally from a to ),( 22 VPb  

1.2 Carnot Cycle
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at temperature θ2 on the ideal gas scale.  During this phase, the cylinder is supposed to be 

uninsulated and placed in a hot bath at temperature θ2.  As it expands isothermally it does 

external work.  Since the working substance is an ideal gas, the internal energy at 

constant temperature is independent of volume (there is no internal work against van der 

Waals forces to be done) so the heat supplied to the gas is equal to the external work that 

it does.  That is, per mole, 

 

     )./ln( 1222 VVRQ θ=     11.2.1 

 

 

 
 

After the gas has reached b the cylinder is insulated and the gas expands adiabatically and 

reversibly to c (P3 , V3). 

 

It is then placed in a cold  bath at temperature θ1, uninsulated, and compressed 

isothermally to d (P4 , V4). During this stage it gives out a quantity of heat Q1: 

 

    )./ln( 4311 VVRQ θ=      11.2.2 

 

Finally it is insulated again and compressed adiabatically and reversibly to its original 

state a. 
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For these four stages we have the equations 

 

    ,2211 VPVP =       11.2.3 

 

    ,3322

γγ = VPVP      11.2.4 

 

    ,4433 VPVP =       11.2.5 

 

    .4411

γγ = VPVP       11.2.6 

 

From these, we readily see that  

 

    ,// 4312 VVVV =      11.2.7 

 

and therefore   .// 1212 θθ=QQ      11.2.8 

 

The net heat received is Q2 − Q1, and this is the heat available for doing external work.  A 

quantity of heat must be supplied at the beginning of each cycle, and so the efficiency of 

the cycle is 

 

   .
2

12

2

12

θ

θ−θ
=

−
=η

Q

QQ
     11.2.9 

 

Thus the efficiency of the Carnot engine is the fractional temperature difference between 

source and sink. 

 

We have specified in the above that the working substance is an ideal gas, the 

temperatures of source and sink being θ1 and θ2 on the ideal gas scale.  Let us now not 

specify what the working substance is, but let us set up a system of 100 Carnot engines 

working in tandem, with the sink of one being the source for the next.  We’ll have the 

sink for the coldest engine in a bucket of melting ice (0 
o
C) and the source for the hottest 

engine in a bucket of boiling water (100 
o
C).  They will be working between isothermals 

and adiabats on an absolute thermodynamic scale, T, defined such that the net work done 

by each engine (i.e. the area of each PV loop) per cycle is the same for each of the 

engines.  This will define the temperature on an absolute scale.  It would take me a while 

to use the computer to do a decent drawing of 100 isotherms and 2 adiabats, so I’m going 

to try to make do with a hand-drawn sketch (figure X1.2) of just five isotherms, two 

adiabats and four linked Carnot cycles to illustrate what I am trying to describe. 

 

We suppose that the efficiency of such a Carnot engine depends solely on the temperature 

of source and sink:   

 

    ).,(/ 2121 TTfQQ =      11.2.10 
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We are making no assumption about the form of this function, which is completely 

arbitrary.  We are free to define it in any manner that is useful to us in our attempt to 

define an absolute temperature scale. 

    
       FIGURE XI.2 

 

Let us consider two adjacent engines, one working between temperatures T1 and T2, and 

the other working between temperatures T2 and T3.  We have: 

 

    ),,(/ 2121 TTfQQ =      11.2.11 

 

    ),,(/ 3232 TTfQQ =      11.2.12 

 

and for the pair as a whole considered as a single engine,  

 

    ).,(/ 3131 TTfQQ =      11.2.13 

 

From these we find that 

 

           .
),(

),(
),(

32

31
21

TTf

TTf
TTf =      11.2.14 

 

This can be only if T3 cancels from the right hand side, so that 

 

    .
)(

)(
),(

2

1
21

T

T
TTf

φ

φ
=      11.2.15 

 

That is,   .
)(

)(

2

1

2

1

T

T

Q

Q

φ

φ
=      11.2.16 

 

And since φ is a completely arbitrary function that we can choose at our pleasure to 

define an absolute scale, we choose 
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    .

2

1

2

1

T

T

Q

Q
=       11.2.17 

 

And, with this choice, the absolute thermodynamic temperature scale is identical with the 

ideal gas temperature scale.   Equation 11.2.17 also implies that entropy in = entropy out.  

Entropy is conserved around the complete cycle.   Entropy is a function of state. 

 

reference, and readers who wish to continue without interruption with the theoretical 

development of the subject can safely skip these and move on to Sections 11.7 and 11.8. 

 

 

 

This takes place between two isotherms and two isochors.  Note that, provided the 

working substance is an ideal gas, there is no change in the internal energy along the 

isotherms, and that the work done by or on the gas is equal to the heat gained by or lost 

from it.  No work is done along the isochors.  I show the cycle in the PV plane in figure 

XI.3, and an imaginary schematic engine in figure XI.4. 
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In Sections 11.3 to 11.5 I give examples of some other cycles. These are largely for

1.3 Stirling Cycle

Figure 2
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The gas is supposed to be held in a cylinder between two pistons.  The cylinder is divided 

into two sections by a porous partition.  One section is kept at a hot temperature T2 and 

the other is kept at a cold temperature T1. 

 

In stage a, the cold gas is compressed isothermally.  The work done on a mole of the gas 

is );/ln( 121 VVRT   this is converted into heat, Qa, which is lost from the gas to the cold 

reservoir. 

 

In stage b, the gas, held at constant volume, is transferred to the hot reservoir.  No work is 

done on or by the gas, but a quantity of heat )( 12 TTCQ Vb −= per mole is supplied to 

the gas. 

 

In stage c, the hot gas is expanded isothermally to its original volume.  The work done by 

a mole of the gas is );/ln( 122 VVRT  in order to prevent the gas from cooling down, it has 

to absorb an equal amount of heat, Qc from the hot reservoir.   Note that .ac QQ >  

 

Hot 
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FIGURE XI.4 
Figure 3



 8 

In stage d, the gas, held at constant volume, is transferred back to the cold reservoir.  No 

work is done on or by the gas, but the gas loses a quantity of heat )( 12 TTCQ Vd −= to 

the cold reservoir.  Note that Qd  =  Qb. 

 

Exercise:   Show that the efficiency is 

 

   .
)/ln()(

)/ln()(

12212

1212

VVRTTTC

VVTTR

V +−

−
=η     11.3.1 

 

If the gas is an ideal diatomic gas (to which air is an approximation), then RCV 2
5= , and 

then 

   .
)/ln()(5.2

)/ln()(

12212

1212

VVTTT

VVTT

+−

−
=η     11.3.2 

 

If helium were used as an ideal gas, the efficiency would be greater, because for helium, 

.
2
3 RCV =   

 

 

 

resemblance) works between two isochors and two adiabats (figure XI.5).  
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)( CD TTCQ V −=∆  

)( BE TTCQ V −=∆  

The Otto cycle (to which the engine under the hood of your car bears some slight

1.4 Otto Cycle

Figure 4
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The cycle starts at A.  From A to B the piston recedes and a valve is open, so that a 

misture of air and petrol (gasoline) is drawn in at constant (atmospheric) pressure.  The 

temperature is typically somewhat above ambient temperature because of the previous 

operation of the cycle.  At B, the valve is closes, and now from B to C a fixed mass of gas 

is compressed adiabatically, the temperature being a few hundred K.  C is the point of 

maximum compression.  At this point a spark is struck and the mixture is ignited.  In 

effect heat is added to the system and the temperature goes up instantaneously to perhaps 

2000 K at constant (small) volume.  The gas, now having reached D, expands 

adiabatically to E, doing work, and the temperature drops somewhat.  At E, a (second) 

valve opens, gas is expelled, the pressure drops to atmospheric, and the temperature drops 

to its original value.  We are now at F.  The piston pushes the remaining gas out, and we 

end at G.  The cycle starts anew. 

 

It is left as an exercise to show: 

 

Net work done by the engine per cycle  =  .1)(
C

B
CD 








−−

T

T
TTCV  

Volume of stroke =  .1
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Maximum pressure =   .

)1/(1

B

C

B

D
BD

−γ









=

T

T

T

T
PP  

 

Efficiency =   .11
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−=








−

−γ

 

 

In principle the efficiency could be very large if the temperature at C, at the end of the 

adiabatic compression, were high.  In practice the temperature at the end of the adiabatic 

compression is limited (and therefore so is the efficiency) because, if the temperature 

were too high, the air-gasoline mixture would ignite spontaneously. 

 

 

 

This difficulty is avoided in the Diesel cycle in that, during the adiabatic compression 

stage to a high temperature, it is just air (not an air-fuel mixture) that is compressed.  

Only then, when the temperature is high, is fuel injected, which then immediately ignites. 

The cycle is shown in figure XI.6. 

 

We start at A.   A valve opens and the piston moves back, and pure air (no fuel) is sucked 

into the cylinder.  This is followed by an adiabatic compression from B to C, which can 

reach a high temperature of 2000 K or so.  At C a jet of liquid fuel is forced at high 

1.5 Diesel Cycle
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pressure into the cylinder by a pump that is operated by the engine itself.  The fuel 

immediately ignites.  The rate of injection is held so that the mixture expands at constant 

pressure until we reach D, at which point the injection of fuel is cut off and the gas 

expands adiabatically to E.  A valve is then opened so that the pressure drops to 

atmospheric at F.  The piston then pushes the remainder of the mixture out, and the cycle 

stars anew.   

 

 

 

It is left as an exercise to show: 

 

Net work done by the engine per cycle  =   
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Have a look at 

   http://www.univ-lemans.fr/enseignements/physique/02/thermo/diesel.html 
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Exercise:   Assuming γ  = 1.4, what are the efficiencies of the Carnot, Otto and Diesel 

cycles running between 350 K and 2000 K?  Assume for the Diesel cycle that the 

maximum pressure is 30 atmospheres.  Assume for the Otto cycle that TC  =650 K. 

 

 

 

 

The Titfield Thunderbolt runs on an engine that slightly resembles the Rankine cycle. 

 

The amount of work obtainable from an engine depends on the amount of the working 

substance and on the temperature.  Internal combustion Otto and Diesel engines work at 

high temperatures, so they can be small.  The steam engine is bulky but does not require 

high temperatures.  The steam engine has a boiler (which, naturally, boils water into 

steam) and a condenser (which, naturally, condenses the steam back again to water). 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steam from the boiler is drawn into a cylinder at constant pressure (A to B), at which 

point the intake valve is closed and the remaining expansion (B to C) is adiabatic, taking 

the temperature down to the temperature of the condenser.  The section C to D 

corresponds to the condensation of the steam.  From D to A the condensed water is 

transferred to the boiler, and the cycle starts again. 

 

 

 

 

FIGURE XI.7 
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11.7    

 

It would probably not be a useful exercise to try to memorise the details of the several 

heat engine cycles described in this chapter.  What probably would be a useful exercise is 

as follows.  Note that in each cycle there are four stages, which, in principle at least (if 

not always in practice) are well defined and separated one from the next.  These stages 

are described by one or another of an isotherm, an adiabat, an isochor or an isobar.  It 

would probably be a good idea to ask oneself, for each stage in each engine, the values of 

∆Q, ∆W and ∆U, noting, of course, that in each case, .WQU ∆+∆=∆   In each case take 

care to note whether heat is added to or lost from the engine , whether the engine does 

work or whether work is done on it, and whether the internal energy increases or 

decreases.  By doing this, one could then easily determine how much heat is supplied to 

the engine, and how much net work it does during the cycle, and hence determine the 

efficiency of the engine. 

 

The following may serve as useful guidelines.  In these guidelines it is assumed that any 

work done is reversible, and that (except for the steam engine or Rankine cycle) the 

working substance may be treated as if it were an ideal gas. 

 

Along an isotherm, the internal energy of an ideal gas is unchanged.  That is to say, 

.0=∆U   The work done (per mole of working substance) will be an expression of the 

form ),/ln( 12 VVRT  and the heat lost or gained will then be determined by 

.0=∆+∆ WQ  

 

Along an adiabat,  no heat is gained or lost, so that .0=∆Q   The expression for the 

work done per mole will be of the form ,
11

)( 221121

−γ

−
=

−γ

− VPVPTTR
 where V is the molar 

volume.  Just be sure to understand whether work is done on or by the engine.  The 

change in the internal energy (be sure to understand whether it is an increase or a 

decrease) is then given by .WU ∆=∆  

 

Along an isochor, no work is done.  That is, .0=∆W   The heat lost or gained per mole 

will be of an expression of the form ),( 12 TTCV −  where CV is the molar heat capacity at 

constant volume.  The change in the internal energy (be sure to understand whether it is 

an increase or a decrease) is then given by .QU ∆=∆  

 

Along an isobar,  none of Q, W  or U are unchanged.   The work done per mole (by or on 

the engine?) will be an expression of the form ).()( 1212 TTRVVPW −=−=∆  

 

The heat added to or lost from the engine will be an expression of the form ),( 12 TTCP −  

where CP is the molar heat capacity at constant pressure.  The change in the internal 

energy (be sure to understand whether it is an increase or a decrease) is then given by 

.WQU ∆+∆=∆  

 

11.7 Useful Examples
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It might also be a good idea to try to draw each cycle in the T : S plane (with the intensive 

variable T on the vertical axes).  Indeed I particularly urge you to do this for the Carnot 

cycle, which will look particularly simple.  Note that, while the area inside the cycle in 

the P : V plane is equal to the net work done on the engine during the cycle, the area 

inside the cycle in the T : S plane is equal to the net heat supplied to the engine during the 

cycle. 

 

 

11.8    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a generalized heat engine.  In the upper part of the cycle (continuous curve) the working 

substance is expanding, and the machine is doing work.  The work done by the engine is 

∫ ,dVP or the area under that part of the curve.  In the lower part of the cycle (dashed 

curve) the working substance is being compressed; work is being done on it.  This work 

is the area under the dashed portion of the cycle.  The net work done by the engine 

during the cycle is the work done by the engine while it is expanding minus the work 

done on it during the compression part of the cycle, and this is the area enclosed by the 

cycle. 

 

P 

V 

FIGURE XI.8 

Figure 8 illustrates schematically the path taken by the state of a working substance is

11.8 Heat Engines and Refrigerator

 
Figure 8
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During one part of any heat engine cycle, heat is supplied to the engine, and during other 

parts, heat is lost from it.  As described in Section 11.1, the efficiency η of a heat engine 

is defined by 

 

   .
cycleaduringenginethesuppliedheat

cycleaduringenginethedoneworkexternal

to

bynet
=η     11.8.1 

 

 

Note that the word “net” does not appear in the denominator.  The efficiency can also be 

calculated from 

 

     ,

in

outin

Q

QQ −
=η     11.8.2 

though I stress that this is not a definition. 

 

In the Carnot engine, which is the most efficient conceivable engine for given source and 

sink temperature, the efficiency is 

 

     ,

2

12

T

TT −
=η      11.8.3 

 

where T2 and T1 are respectively the temperatures of the hot source and cold sink. 

 

 

If the working substance is taken round a cycle in the PV-plane in the counterclockwise 

direction, the device is a refrigerator. 
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In that case the area enclosed by the cycle is equal to the net work that is done on the 

working substance.  If the refrigerator operates on a reverse Carnot cycle, the working 

substance takes in (from whatever it is that it is trying to cool) a quantity of heat Q1 as it 

expands isothermally from d to c (see figure XI.1, but with the arrows reversed) and 

expels a (greater) quantity of heat Q2 as it is compressed isothermally from b to a.  This 

quantity Q2 is expelled into the room – which is why the room gets warmer when you 

switch on the fridge.  (What – you never noticed?)  The refrigerating effect is Q1, since 

this is the quantity of heat taken in by the refrigerator from the body that is to be cooled. 

 

The coefficient of performance of a refrigerator is defined by 

 

      .
cycletheduringenginethedoneworknet

effectingrefrigerat

on
  11.8.4 

 

By the first law of thermodynamics, the denominator of the expression is ,12 QQ − and for 

a reversible Carnot cycle, the entropy in equals the entropy out, so that .// 1212 TTQQ =   

Therefore the coefficient of performance for a Carnot refrigeration cycle can be 

calculated from 

 

      .

12

1

TT

T

−
    11.8.5 

 

This, of course, can be much greater than 1 – but no refrigerator working between the 

of a reversible Carnot refrigerator.  

 
Of course the working substance in a real refrigerator (“fridge”) is not an ideal gas, nor does one follow a 

Carnot cycle – there are too many practical difficulties in the way of achieving this ideal dream.  As 

mentioned elsewhere in this course, I am not a practical man and I am not suited to describing real, 

practical machines.  The fundamental principles described in this section do, of course, still apply in the 

real world!   In a real refrigerator, the working substance (the refrigerant) is a volatile fluid which is 

vaporized in one part of the operation and condensed to a liquid in another part.  In industrial refrigerators, 

the refrigerant may be ammonia, but this is considered to be too dangerous for domestic use.  “Freon”, 

which was a mixture of chlorofluorocarbons, such as CCl2F2, was in fashion for a while, but escaping 

chlorofluorocarbons have been known for some time to cause breakdown of ozone (O3) in the atmosphere, 

thus destroying our protection against ultraviolet radiation from the Sun.  The chlorofluorocarbons have 

been largely replaced by hydrofluorocarbons, such as C2H2F4, which are believed to be less damaging to 

the ozone layer.  The exact formula or mixture is doubtless a trade secret. 

 

The fluid is forced around a system of tubes by a pump called the compressor.  Shortly before the fluid 

reaches the freezer it is in liquid form, moving along some rather narrow pipes.  It is then forced through a 

nozzle into a system of wider pipes (the evaporator) surrounding the freezer, and there it vaporizes, taking 

heat from the food and from the air in the freezer.  A fan may also distribute the cooled air throughout the 

rest of the refrigerator.  After leaving the freezer, the vapour returns to the compressor, where it is, of 

course, compressed (which is why the pump is called the compressor).  This produces heat, which is 

dissipated into the room as the fluid is forced through a series of pipes and vanes, known as the condenser, 

at the rear of the fridge, where the fluid condenses into liquid form again.  The cycle then starts anew. 

 

 

same source and sink temperatures can have a coefficient of performance greater that that



 16 

The following summary of Carnot heat engines and refrigerators may be helpful.  (But 

just remember that, while Carnot cycles are the most efficient engines and refrigerators 

for given source and sink temperatures, the practical realization of a real engine or 

refrigerator may not be identical to this theoretical ideal.) 

 

Notation:  T2  =  hotter temperature 

   T1  =  cooler temperature 

   Q2 =  heat gained or lost at T2 

   Q1 =  heat gained or lost at T1 

 

 

 ∆S  =  0  .
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 ∆U   =   0  Net work done by engine  =  Q2  −  Q1 . 

 

  Efficiency  .
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11.9 Heat Engine:

Figure 10
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 ∆U   =   0  Net work done on refrigerator  =  Q2  −  Q1 . 
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11.10 Refrigerator

Figure 11
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The principle of a heat pump is the same as that of a refrigerator, except that its purpose 

is different. The purpose of a refrigerator is to extract heat from something (e.g. food) and 

so to make it colder.  That the heat so extracted goes into the room to make the room 

warmer (at least in principle) is incidental.  The important thing is how much heat is 

extracted from the food, and that is why it is appropriate to define the coefficient of 

performance of a refrigerator as the refrigerating effect (i.e. Q1) divided by the net work 

done on the refrigerator, per cycle.  But with a heat pump, the object is the heat the room 

by extracting heat from outside.  That the outside may become cooler (at least in 

principle) is incidental.  Thus, for a heat pump, the appropriate definition of the 

coefficient of performance is the heating effect (i.e. Q2) divided by the net work done on 

the refrigerator, per cycle.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∆U   =   0  Net work done on heat pump  =  Q2  −  Q1 . 
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You can see from this equation that, the warmer it is outside (T1), the greater the 

coefficient of performance.   You may therefore wonder if it is practical to use a heat 

pump to heat a building in a cold climate, such as the Quebec winter.  And, if it isn’t, can 

one devise an engine that is simultaneously a refrigerator and a heat pump; that is to say, 

it extracts heats from (i.e. cools) the food, and transfers this heat (plus a little bit more 

because of the work that is done on the refrigerator/heat pump) into the room in order to 

Times-

Colonist of June 11, 2006, which I reproduce, with permission, below. 
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Heat Pump:

heat the room effectively. There’s an answer to that in an article in the Victoria

Figure 12


